so haben wir, wie erwähnt, die bei 100° getrocknete Substanz analysirt. Wir werden aber nunmehr nochmals Versuche vornehmen, um zu entscheiden, ob das Thiophenylmethylpyrazolon aus wässerigem Alkohol mit Krystallwasser, oder mit Krystallakohol und eventl. mit wie vielen Molekülen, krystallisirt.

K. Buchka.

Göttingen. Universitätslaboratorium, den 13. März 1890.

125. J. F. Eykman: Ueber die Umwandlung von Allyl- in Propenylbenzolderivate, ihre Dispersion und Refraction.

(Eingegangen am 17. März; mitgetheilt in der Sitzung von Hrn. A. Pinner.)

In einer früheren Mittheilung (diese Berichte XXII, 2736) habe ich durch Vergleichung der Brechungsverhältnisse einiger metamerer Körperpaare nachweisen können, dass die Ursache der bedeutenden Differenzen zwischen den Dispersionen und Refractionen der Allylund Propenylbenzolderivate nur in der verschiedenen Stellung der Doppelbindung in der C₃H₅-Gruppe gesucht werden kann, weil die damals geprüften Körper, Methylchavicol und Anethol, Eugenol und Iseugenol, Safrol und Isosafrol, eben keinen anderen Unterschied in ihrer Constitution aufwiesen. Da die gefundenen Dispersionen, sowohl für die Allyl-, wie für die Propenylreihe, nahezu constant sich erwiesen, liess sich die Bestimmung der Dispersion auch als Hülfsmittel1) benutzen zur Beantwortung mehrerer Fragen bezüglich der Stellung der Doppelbindung in den Seitenketten vieler Benzolderivate. Sie konnte z. B. dazu beitragen, Klarheit zu schaffen in der Constitution der zahlreichen Isomeren, welche auf verschiedenem Wege aus solchen Körpern dargestellt worden sind, z. B. flüssiges Metanethol aus Anethol durch Erhitzen mit Chlorzink (Gerhardt), isomeres Safrol durch Erhitzen von Safrol mit Natrium auf 2000 (Poleck und Schiff)

¹⁾ Ein derartiges Hülfsmittel dürfte willkommen sein, weil es keine einfache chemische Beweisführung für die Stellung der Doppelbindung giebt. Die Bildung von Essigsäure bei der Oxydation kann z. B. nicht als zuverlässiges Kriterium für die Propenylgruppe gelten. Vor Kurzem hat Poleck (diese Berichte XXII, 2862) noch Essigsäure unter den Oxydationsproducten des Safrols constatirt, wiewohl ich durch die optische Prüfung, sowie durch Vergleich mit synthetisch dargestelltem Iso afrol beweisen konnte, dass Safrol kein Propenyl-, sondern ein Allylderivat ist

isomeres Apiol beim Erhitzen des Apiols mit alkoholischem Kali (v. Gerichten) u. s. w. Ueber einige weitere sich hierauf beziehende Versuche sei hier berichtet.

Cubebin.

Nach Heldt1), wie auch E. Schmidt2) besitzt dieser Körper die empirische Zusammensetzung C₃₀ H₃₀ O₉. Weidel³) und Pomeranz⁴) nehmen die einfachere Formel C₁₀ H₁₀ O₃ an. Pomeranz erwähnt die Bildung eines Aethers $(2C_{10}H_{10}O_3 - H_2O = C_{20}H_{18}O_5)$ beim Erhitzen mit Essigsäureanhydrid und Natriumacetat, eines Benzoylesters beim Erhitzen mit Benzoylchlorid, C10 H9 O2. O. C7 H7 O, und von Piperonylsäure bei der Oxydation mittelst Kaliumpermanganat, wonach das Cubebin als ein in der Seitenkette oxydirtes Safrol zu betrachten ist: CH2 O2. C₆H₃. C₃H₄OH (1:2:4). Die optische Prüfung schien umsomehr interessant, als das Cubebin wegen seiner optischen Activität ein asymmetrisches Kohlenstoffatom enthalten muss und ein solches nur denkbar ist, wenn die Seitenkette die normale Allylstructur besitzt, worin das Hydroxyl die β -Stellung einnimmt: $(C_6H_3 \cdot O_2CH_2 \cdot CHOH)$ CH: CH₂). Das Cubebin konnte hiernach nur die normale Dispersion zeigen, und lag hier also der Fall vor, dass die constitutive Ursache des einen optischen Verhaltens (Rotationsvermögen) durch das andere (Dispersionsvermögen) kontrollirt werden konnte.

Für ein Gemisch von $0.9654\,\mathrm{g}$ Cubebin und $1.6478\,\mathrm{g}$ Eugenol fand ich bei $14.5^{\,\mathrm{o}}$

	d	n_{α}	n_{d}	$\mathbf{n}_{oldsymbol{eta}}$	η
Cubebin - Eugenolmischung	1.142	1.55279	1.55793	1.57180	_
Eugenol	1.072	1.53853	1.54385	1.55738	1.56916

woraus sich nach der gewöhnlichen Mischungsgleichung für reines Cubebin berechnet

$$n_{\beta} - n_{\alpha} = 0.0196$$
 und $n_{\beta} - n_{\alpha}/d = 0.0152$,
 $n_{d} - n_{\alpha} = 0.0052$ » $n_{\delta} - n_{\alpha}/d = 0.0040$,

Zahlen, welche der erwarteten normalen Dispersion völlig entsprechen. Weil jedoch die specifischen Dispersionen $\frac{d}{d}$ etwas niedriger sind als die früher gefundenen Werthe, veranlasste mich dieses, zunächst die

¹⁾ Arch. d. Pharm. 191, 32.

²) Arch. d. Pharm. VII, 6, 1877.

³⁾ Wiener acad. Sitzungs-Berichte [2], 74, 377.

⁴⁾ Diese Berichte XX, Ref. 719; XXI, Ref. 650; aus Monatsh. für Chem. [8], 466; [9], 323.

Richtigkeit der Molecularformel C₁₀H₁₀O₃ zu controlliren. Mittelst der kryoskopischen Methode ergab sich dann, dass dem Cubebin die doppelte Formel beizulegen ist.

In 12.7185 g Urethan, nach einander gelöst:

Cubebin	Procent- gehalt	Mg. Mol. p. 1000 g	Depression	Molecular - Depression für C ₂₀ H ₂₀ O ₆		
1.1825 g	1.448	40.7	0.20	49.2) There so st		
0.1320 »	2.158	60.6	0.32	$\frac{43.2}{52.8}$ Theor. 50-51		
In 12.	7435 g Phen	ol:				
0.0978 g	0.7604	21.3	0.15	70.4		
0.1100 »	1.604	45.0	0.334	74.2 Theor. 70-75		
0.1137 »	2.461	69.3	0.54	79.2		

Ein Versuch, mit dem früher beschriebenen Apparat die Dampfdichte in verdünnter Wasserstoffatmosphäre zu bestimmen, ergab ein negatives Resultat; bei 232° und einem Druck von 45 mm zeigte das Cubebin noch keine messbare Spannung, sodass dieses ebenfalls auf ein Polymeres der Formel $C_{10}H_{10}O_3$ hinweist.

Vielleicht besitzt das Cubebin eine den Liebermann'schen Truxilisäuren analoge Structur, z. B.

$$\begin{array}{c} C\,H_2\,O_2\,.\,C_6\,H_3\,-\,C\,H\,O\,H\,-\,C\,H\,-\,C\,H_2\\ & | & | \\ C\,H_2\,O_2\,.\,C_6\,H_3\,-\,C\,H\,O\,H\,-\,C\,H\,-\,C\,H_2 \end{array}.$$

Die benachbarte symmetrische Stellung der beiden CHOH-Gruppen macht dann die innere Aetherbildung durch Wasserentziehung mittelst Essigsäureanhydrid u. s. w. leicht verständlich. Es sind jedoch viele andere Constitutionen der doppelten Allylgruppe möglich, mit oder ohne Doppelbindung, so dass auch aus dem optischen Verhalten wenig abzuleiten ist. Nur macht die normale Dispersion es wahrscheinlich, dass, falls ein doppeltgebundenes Kohlenstoffpaar in der Seitenkette anwesend ist, dasselbe nicht unmittelbar am Benzolkern haftet.

Apiol und Isapiol.

Das Apiol, der krystallinische Hauptbestandtheil des ätherischen Oeles von Apium petroselinum, ist in jüngster Zeit vielfach Gegenstand eingehender Untersuchungen gewesen 1) (Ginsberg, Ciamician und Silber). Namentlich die Arbeiten letztgenannter Forscher haben zu der Constitution C₆ H. O₂ CH₂. (OCH₃)₂ C₃ H₅ geführt.

¹) Diese Berichte XXI, 913, 1192, 1621, 2129, 2514; XXII, 119, 2481 und XXIII, 323.

Schon im Jahre 1876 hatte von Gerichten¹) durch Erhitzen des Apiols mit alkoholischer Kalilauge daraus einen in glänzenden Blättchen krystallisirenden Körper gewonnen, welcher nach Ciamician, Silber und Ginsberg die gleiche procentische Zusammensetzung wie das Apiol besitzt und Isapiol benannt wurde.

Ob diese Isomerie auf Polymerie oder auf Metamerie der C₃H₅-Gruppe beruht, dürfte als noch nicht ganz erledigt betrachtet werden, weil keinem der genannten Forscher eine Dampfdichtebestimmung des Apiols gelang und Versuche von Ciamician und Silber, durch Abspaltung von Kohlensäure aus der mittelst Apionaldehyd nach der Perkin'schen Synthese dargestellten Apionmetacrylsäure, zu einem mit Apiol oder Isapiol isomeren oder identischen Körper zu gelangen, bis jetzt scheiterten (diese Berichte XXII, 2486).

Zur optischen Prüfung wurde das Apiol (Schmp. 30°) in überschmolzenem Zustande, das nach der Methode von v. Gerichten daraus dargestellte Isapiol, seines höheren Schmelzpunktes wegen, im Gemische mit Safrol untersucht. Eine Dampfdichtebestimmung des Apiols gelang mir mittelst des früher beschriebenen Apparates (diese Berichte XXII, 2754) leicht. Gefunden wurde:

 $V_T = 0.2335 \, L$, $V_t = 0.019 \, L$, $w = 0.00005797 \, L$, $P = 0.0374 \, g$, $p = 14.677 \, g$, $T = 232^0$, $t = 30^0$, $h = 50.5 \, mm$, $H = 69.2 \, mm$, woraus sich nach der Formel

D = 422.4
$$\frac{w}{p} \cdot \frac{1000 \text{ P}}{\frac{V_t}{273 + T} + \frac{V_t + (h + H) w}{273 + t}}$$

D = 113.7 (Theor. 111).

berechnet

D = 115.7 (1 neor. 111).

Das Isapiol habe ich kryoskopisch untersucht, und wurde ebenfalls eine mit der Formel des Apiols übereinstimmende Moleculargrösse gefunden (siehe unten), sodass hiermit die Vermuthung obengenannter Autoren, Apiol und Isapiol seien Isomere der einfachen Formel C₁₂ H₁₄O₄, sich als richtig herausstellte.

Für die Dispersionen fand ich:

Δ	Apiol Isapiol		⊿/d	Apiol	Isapiol	
$n_{\gamma} - n_{\alpha}$ $n_{\beta} - n_{\alpha}$ $n_{d} - n_{\alpha}$	0.0288 0.0180 0.0049	0.0427 0.0241 0.0065	$\begin{array}{c c} \mathbf{n}_{\gamma} - \mathbf{n}_{\alpha}/\mathbf{d} \\ \mathbf{n}_{\beta} - \mathbf{n}_{\alpha}/\mathbf{d} \\ \mathbf{n}_{\delta} - \mathbf{n}_{\alpha}/\mathbf{d} \end{array}$	0.0245 0.0153 0.0042	0.0356 0.0201 0.005 4	

Vergleichen wir die specifischen Dispersionen $\frac{\mathcal{L}}{d}$ mit den früher für die Allyl- und Propenylderivate erhaltenen (I. c. vergl. auch nach-

¹⁾ Diese Berichte IX, 1477.

stehende Tabelle), so sind beide wesentlich niedriger, und würde dieses zu der Annahme führen, dass vielleicht

in Apiol die Trimethylenstructur —
$$CH$$
 $\subset CH_2$, CH_2 in Isapiol die Isoallylstructur — C $\subset CH_3$

vertreten wäre 1).

Vergleicht man jedoch nicht die durch die Dichten dividirten Dispersionen, sondern letztere an und für sich, so ergiebt sich eine bessere Uebereinstimmung mit den früher erwähnten Zahlen, so dass hiernach das Apiol als Allyl-, das Isapiol als Propenylderivat anzusprechen wäre. Um nun weiteren Aufschluss über die Constitution der Allvlgruppe in diesen Körpern zu erhalten und damit auch der Beantwortung der Frage näher zu treten, welche Art der Vergleichung der Dispersionen die rationellere ist, habe ich die Einwirkung von alkoholischem Kali auf Körper mit normaler Allylstructur untersucht. Als Resultat ergab sich, dass sämmtliche Körper, Safrol, Methylund Aethyläther des Eugenols, Aethylchavibetol 2) leicht und anscheinend quantitativ in die entsprechenden Propenylisomeren übergeführt werden konnten. Diese Umwandlung katalytischer Art ist somit eine allgemeine; dieselbe setzte mich auch in den Stand, einen weiteren entscheidenden Beweis für die gegebene Constitution des Chavicols beizubringen. Ist nämlich letztere C₆ H₄. OH. CH₂. CH: CH₂ (1:4), so müsste der Methyläther sich in Anethol, C₆ H₄. OCH₃. CH: CH.CH₃ (1:4), umwandeln lassen. Der Versuch hat dieses bestätigt. Bei der Destillation des Reactionsproductes im Vacuum erstarrte das Destillat durch geringe Abkühlung zu einer dem Anethol völlig ähnlichen, eisartig blätterig krystallinischen Masse, welche den intensiv süssen Anisgeschmack des Anethols besass und in allen übrigen untersuchten physikalischen Eigenschaften, Dichte, Refraction und Dispersion, mit Anethol sich identisch erwies. Das aus Safrol erhaltene Product siedete fast völlig zwischen 247 - 249° (i. D); die Dichte wurde pyknometrisch zu 1.126 bei 11.50 gefunden, während das früher aus α-Methylenhomokaffeesäure dargestellte Isosafrol eine Dichte = 1.119

 $^{^{1}}$) Wenn auch in der Natur keine Körper mit dieser Structur für die C_3H_5 -Gruppe nachgewiesen wurden, so könnte für diesen vereinzelten Fall der Umstand sprechen, dass auch nur für Apiol die Umwandlung dieser Gruppe durch alkoholisches Kali beobachtet wurde. Die Vermuthung, dass die Trimethylenstructur eine geringere Dispersion und Refraction besitzt, gründet sich auf die Abwesenheit einer Doppelbindung im gewöhnlichen Sinne.

²⁾ Zur Unterscheidung der beiden Betelphenole, C₆H₄.OH.C₃H₅ (1:4), und C₆H₄.OCH₃.OH.C₃H₅ (1:2:4) möchte ich die resp. Namen Chävicol und Chavibetol (von Chavica Betle) vorschlagen.

bei 21° besass und bei etwa 240 – 245 (uncorr., wegen der geringen Quantität nicht näher bestimmt) siedete. Auch das von Schiff und Poleck durch Erhitzen des Safrols mit Natrium auf 200° erhaltene, bei 248° siedende Isomere ist somit wohl ebenfalls Isosafrol. Methyleugenol lieferte flüssiges, schwach riechendes Methyliseugenol, Aethyleugenol den entsprechenden Iseugenoläther in schönen, bei 63° schmelzenden Blättchen, Aethylchavibetol aus Alkohol in grossen Krystallen krystallisirendes, bei 49° schmelzendes Aethylisochavibetol 1).

Zum Beweise, dass die erhaltenen Isomeren keine Polymeren sind, habe ich noch Moleculargewichtsbestimmungen nach dem Raoult'schen Princip vorgenommen. Dazu wurden in derselben Menge Urethan, worin die Bestimmungen mit Cubebin stattgefunden hatten, nach einander bestimmte Mengen dieser Körper gelöst. Folgende Versuchsdata ergaben für alle ohne Ausnahme die Abwesenheit von Polymerie.

In :	$12.7185~\mathrm{g}^{\circ}$	Urethan,	nach	einander	gelöst.
------	------------------------------	----------	------	----------	---------

	Mg. Mol. p. 1000 g	De- pression	Mol Depr.	Theorie
$0.1825g$ Cubebin $\mathrm{C}_{20}\mathrm{H}_{20}\mathrm{O}_6$	40.7	0.20	49.2	50 - 51
0.1320 » » »	60.6	0.32	52.8	für
0.1937 » Isapiol $C_{12}H_{14}O_4$	128.8	0.663	51.5	äusserste
0.1511 » Isosafrol $\mathrm{C}_{10}\mathrm{H}_{10}\mathrm{O}_2$	200.2	1.015	50.7	Ver- dünnung
0.1961 » Methyliseugenol $\mathrm{C}_{11}\mathrm{H}_{14}\mathrm{O}_2$.	283.3	1.414	50.4	aunnung
0.0915 » Aethylisochavibetol $C_{12}H_{16}O_2$	319	1.583	49.6	
0.1079 » Aethyliseugenol $C_{12} H_{16} O_2$	360.7	1.775	48.7	

Von allen genannten Körpern habe ich dann die Bestimmung der Brechungsindices vorgenommen und auch die früheren wiederholt, insofern sich in den erhaltenen Zahlen für die Dispersionen noch kleinere Bestimmungsfehler vermuthen liessen. Es stand mir dazu ein neues Goniometer Nr. 2 (Fuess, Berlin) zu Gebote, welches Hr. Professor van't Hoff mir freundlichst zur Verfügung stellte. Die Resultate sind in folgender Tabelle zusammengestellt.

Die bei gewöhnlicher Temperatur nicht flüssigen Körper, welche sich auch nicht in überschmolzenem Zustande verwenden liessen (Isapiol,

¹⁾ Auch Eugenol lässt sich in Iseugenol umwandeln, scheint aber längere Zeit der Erwärmung zu bedürfen. Das erhaltene Product zeigte eine erhebliche Steigerung der Dichte und Dispersion, war aber, wie ein Vergleich mit synthetischem Iseugenol und mit Methyliseugenol lehrte, noch nicht völtig umgewandelt. Einen weiteren Versuch habe ich vorläufig wegen Mangels an Eugenol unterlassen müssen.

Aethyliseugenol, Aethylisochavibetol) wurden im Gemische mit Safrol untersucht. Für diese Gemische wurden gefunden:

A ethylisochavibetol: 0.1094 g + 0.1136 g Safrol bei 11^{0} , d = 1.074. $n_{\alpha} = 1.54626$, $n_{\delta} = 1.55205$, $n_{\beta} = 1.56839$, $n_{\gamma} = 1.58364$, $n_{A} = 1.51718$.

Aethyliseugenol: 0.3396 g + 0.5536 g Safrol bei 11° , d = 1.084. $n_{\alpha} = 1.54383$, $n_{\delta} = 1.54964$, $n_{\beta} = 1.56517$, $n_{\gamma} = 1.58011$, $n_{A} = 1.51561$.

Isapiol (1): 0.8421 g + 1.4912 g Safrol bei 11^0 , d = 1.139. $n_{\alpha} = 1.54537$, $n_{\delta} = 1.55106$, $n_{\beta} = 1.56600$, $n_{\gamma} = 1.57999$, $n_{A} = 1.51844$.

Isapiol (2): 0.1428 g + 0.2277 g Safrol bei 12° , d = 1.142. $n_{\alpha} = 1.15468$, $n_{\delta} = 1.5525$, $n_{\beta} = 1.5680$, $n_{\gamma} = 1.5820$, $n_{A} = 1.5194$.

Asaron: 0.1911 g + 0.4668 g Safrol bei 11°, d = 1.106. $n_{\alpha} = 1.54549$, $n_{\delta} = 1.55129$, $n_{\beta} = 1.56708$, $n_{\gamma} = 1.58150$, $n_{A} = 1.51748$.

Die Dichten sind für die Mehrzahl, weil mir nur geringe Mengen Substanz zur Verfügung standen, mittelst der Schurmmethode bestimmt worden.

(Siehe Tabelle auf Seite 862 u. 863.)

Aus der Tabelle ist ersichtlich, dass sämmtliche unter den Allylderivaten angeführten Körper eine normale, die der Propenylreihe dagegen eine abnorm hohe Dispersion wie auch Refraction zeigen. In beiden Reihen sind die Dispersionen nahezu constant und bei den Propenylderivaten fast 1½ mal grösser als die der Allylreihe. Bei den Allylbenzolderivaten ist die Dispersion der Aether niedriger als die der entsprechenden Phenole und nimmt mit der Zahl der Methyl-Gruppen ab, ein Unterschied, der bei den Propenylderivaten nicht hervortritt. Während bei den Allylderivaten auch die specifischen Dispersionen A/d nahezu constant sind, zeigen sich dieselben bei den Propenylderivaten um so kleiner, je höher die Dichte (Isosafrol und Isapiol), so dass die Vergleichung der einfachen Dispersionen den Vorzug zu verdienen scheint vor der der specifischen Dispersionen. Dies scheint mir übrigens auch daraus hervorzugehen, dass Einführung von Sauerstoff die Dichte erheblich erhöht, während sie die Dispersion nur wenig beeinflusst, und andererseits die blosse Verschiebung der Doppelbindung, welche die Dichte relativ nur wenig ändert, die Dispersion auf das 11/2 fache steigert. Die Vergleichung der sogenannten Moleculardispersionen

$$\Delta \cdot MV = a C_n + b H_m + u. s. w.$$

hat wenig Zweck, da diese Gleichung hier nicht die mindeste Gültigkeit besitzt. In der Propenylreihe ist nämlich das Moleculardisper-

	D	t ^o	MG	MV	n _α	n _d	n _β	n _y
Allylderivate								
Chavicol, $C_9 H_{10} O = {}^4 C_6 H_4 OH . C_3 H_5 (1:4)$	1.033	18	134	129.7	1.5393	1.5441	1.5573	1.6689
Methylchavicol, $C_{10}H_{12}O = {}^{4}C_{6}H_{4} \cdot OCH_{3} \cdot C_{3}H_{5}(1:4)$	0.979	11.5	148	151.2	1.5199	1.5244	1.5371	1.547 6
Aethylchavicol, $C_{11}H_{14}O = {}^{4}C_{6}H_{4}.OC_{2}H_{5}.C_{3}H_{5}(1:4)$	0.961	12.2	162	168.5	1.5133	1.5179	1.5299	1.5400
Chavibetol, $C_{10}H_{12}O_2 = {}^4$ $C_6H_3.OCH_3.OH.C_3H_5(1:2:4)$	1.065	16	164	154	1.5349	1.5397	1.5527	1.5644
Aethylchavibetol, $C_{12} H_{16} O_2 = 4$ $C_6 H_3 \cdot OCH_3 \cdot OC_2 H_5 \cdot C_3 H_5 (1:2:4)$	1.013	11.5	192	189.5	1.5232	1.5276	1.5403	1.5514
Eugenol, $C_{10}H_{12}O_2 = 4$ $C_6H_3.OH.OCH_3.C_3H_5(1:2:4)$	1.072	14.5	164	153	1.5385	1.5439	1.5574	1.569 2
Methyleugenol, $C_{11} H_{14} O_2 = 4$ $C_6 H_3$. (OCH ₃) ₂ $C_3 H_5$ (1:2:4)	1.041	11	178	171	1.5328	1.5373	1.5511	1.5631
Aethyleugenol, $C_{12}H_{16}O_2 = 4$	1.021	9.5	192	188.1	1.5256	1.5301	1.5426	1.5529
$C_6H_3.OC_2H_5.OCH_3.C_3H_5(1:2:4)$	1.105	17		146.6	1.5357	1.5410	1.5544	1.5661
Safrol, $C_{10}H_{10}O_2 = 4$	1.110	12	162	145.9	1.5369	1.5420	1.5557	1.5679
$C_6 H_3 . O_2 CH_2 . C_3 H_5 (1:2:4)$	1.1105	11	162	145.9	1.5372	1.5425	1.5560	1.5676
Apiol, $C_{12}H_{14}O_4 = {}^4C_6H_2(O_2CH_2)(OCH_3)_2C_3H_5$	1.176	14	222	188.6	1.5330	1.5380	1.5510	1.5619
Propenylderivate								
Anethol aus Anisöl	0.999	11.5	148	148.2	1.5558	1.5624	1.5813	1.5988
aus Methylchavicol $C_{10}H_{12}O = 4$ $C_{6}H_{4} \cdot OCH_{3} \cdot C_{3}H_{5}(1:4)$	0.997	12	148	148.5				1.5981
Aethylisochavibetol, $C_{12}H_{16}O_2 = 4$ $C_6H_3 . OCH_3 . OC_2H_5 . C_3H_5 (1:2:4)$	1.039	11	192	184.9	1.5539	1.5602	1.5792	1.5980
Iseugenol (synthet.), $C_{10}H_{12}O_2=4$ C_6H_3 . OH. OCH ₃ . C_3H_5 (1:2:4)	1.09	18	164	150.5	1.5617	1.5680	1.5868	
Methyliseugenol, $C_{11} H_{12} O_2 = 4$ $C_6 H_3 (OCH_3)_2 C_3 H_5 (1:2:4)$	1.064	11.5	178	167.3	1.5649	1.5720	1.5911	1.6096
Aethyliseugenol, $C_{12}H_{16}O_2 = 4$ $C_6H_3.OC_2H_5.OCH_3.C_3H_5(1:2:4)$	1.044	11	192	184	1.5540	1.5607	1.5792	1.5993
Isosafrol (synthet.), $C_{10}H_{10}O_2=4$	1.128	12	162	143.6	1.5693	1.5763	1.5963	1.615 5
C6H3.O2CH2.C3H5(1:2:4) aus Safrol	1.125	14	162	144	1.5674	1.5743	1.5936	1.6122
Isapiol, $C_{12}H_{14}O_4 = 4$	1.197	12	222	185.5	1.5639	1.5703	1.5892	1.606 2
C ₆ H ₂ (O ₂ CH ₂) (OCH ₃) ₂ C ₃ H ₅	1.200	11	222	185	1.5612	1.5677	1.5853	1.6039
Asaron, $C_{12}H_{16}O_3 = 4$ $C_6H_2(OCH_3)_3C_3H_5$	1.091	11	208	190.7	1.5648	1.5719	1.5931	1.6142
	•							

n _A	(A-1) gef.	MV ber.	$rac{A^2-}{A^2+}$ gef.	$rac{1}{2} extbf{MV}$ ber.	$\frac{\mathrm{d}^2 -}{\mathrm{d}^2 +}$ gef.	$\frac{1}{2}$ MV	n _γ -n _α	$n_{\beta}-n_{\alpha}$	$n_d - n_{\alpha}$	$\frac{\mathbf{n}_{\mathbf{v}} - \mathbf{n}_{\alpha}}{\mathbf{d}}$	$\frac{n_{\beta}-n_{\alpha}}{d}$	$\frac{n_d-n_\alpha}{d}$
1.5163	67	67.3	39.2	40	41	41.4	0.0296	0.0180	0.0047	0.0286	0.0174	0.0046
1.4984	75.4	74.8	44.3	44.5	46	46.2	0.0277	0.0171	0.0045	0.0283	0.0175	0.0045
1.4925	83	83.2	48.9	49	50.8	50.9	0.0267	0.0166	0.0046	0.0278	0.0173	0.0048
1.5120	78.8	77.5	46.2	46	48.3	47.7	0.0295	0.0178	0.0048	0.0277	0.0167	0.0045
1.5013	95	92.4	55.8	55	58.3	57.2	0.0282	0.0171	0.0044	0.0279	0.0169	0.0044
1.5147	78.7	77.5	46.1	46	48.3	47.7	0.0306	0.0189	0.0051	0.0286	0.0176	0.0048
1.5092	87.1	85	51.1	50.5	53.4	52.6	0.0303	0.0183	0.0045	0.0291	0.0176	0.0044
1.5043	94.8	92.4	55.7	55	58.1	57.2	0.0274	0.0171	0.0046	0.0268	0.0167	0.0045
1.5122	75.1	74.9	44	44	46.1	45.8	0.0303	0.0187	0.0053	0.0274	0.0169	0.0048
1.5128	74.9		43.9		45.9						0.0169	
1.5135	74.9		43.9		45.9						0.0170	0.0048
1.5106			56.5	56	59	58.6					0.0110	
1.9100	30.0	30.2	30.3	<i>J</i> 0	00	30.0	0.0200	0.0180	0.0043	0.0240	0.0133	0.0042
1.5223	77.4	74.8	45.2	44.5	48.1	46.2	0.0430	0.0255	0.0066	0.0431	0.0255	0.0066
1.5228	77.8	74. 8	45.4	44.5	48.2	46.2	0.0424	0.0253	0.0066	0.0424	0.0254	0.0066
1.5194	96	92.4	56.2	55	59.8	57.2	0.0442	0.0254	0.0063	0.0425	0.0244	0.0061
1.5310	80	77.5	46.5	46	49.3	47.7		0.0251	0.0063		0.0231	0.0058
1.5301	88.7	85	51.7	50.5	55	52.6	0.0447	0.0262	0.0071	0.0420	0.0246	0.0067
1.5188	95.4	92.4	55.8	55	59.5	57.2	0.0453	0.0252	0.0066	0.0434	0.0242	0.0064
1.5339	76.7	74.9	44.7	44	47.6	45.8	0.0462	0.0270	0.0071	0.0410	0.0239	0.0063
1.5326	76.6		44.6		47.5				ļ	1	0.0232	1
1.5310			57.4		60.9		0.0423	1	0.0064	1	0.0202	
1.5279	97.7		56.9	56	60.5		0.0427		0.0065	-	0.0201	
1.5264					62.5		0.0494		0.0071	!	0.0251	
1,0204	100.5	. 00.1	0.0	00.0	02.0	00	0.0404	0.0202	0.0071	0.0400	0.0233	0.0003

sionsvermögen von CH₂, wie sich dieses beim Vergleich der Aether des Chavicols, Eugenols u. s. w. mit deren Isomeren ergiebt, etwa das Doppelte von dem in der Allylreihe, und das Dispersionsincrement der Doppelbindung in der Propenylreihe ist an und für sich um so viel grösser als das in der Allylreihe, als etwa das fünffache des Moleculardispersionsvermögens von CH₂ in der Allylreihe beträgt.

Dass übrigens Refraction, Dispersion und Dichte correlative Grössen sind, bestätigen die höheren Zahlen für die Propenylderivate. Die Brechungsindices der letzteren sind etwa 0.03 höher als die der Allylverbindungen.

Die Verkleinerung des Molecularvolums (etwa 3 Einheiten) ist jedoch dem Zuwachse des Refractionsvermögens, viel weniger des Dispersionsvermögens proportional, so dass dieselbe sich in dem Producte beider Grössen (Molecularrefraction und Moleculardispersion) nicht ausgleicht.

Die bessere Uebereinstimmung der gefundenen Molecularrefractionen mit der mittelst der Constanten berechneten ergeben die Formeln, welche der Dispersion Rechnung tragen, und von diesen zeigt die A_2 -Formel die grösste Coincidenz.

Der leicht zu realisirende Platzwechsel der Doppelbindung in den Allylbenzolderivaten durch mehrstündiges Erhitzen mit gesättigtem alkoholischem Kali dürfte auch in mehrerer Beziehung praktischen Nutzen haben.

Erstens gestattet er z. B. den Nachweis, dass ein Allylbenzolderivat vorliegt, wenn dasselbe durch dieses Reagenz in einen isomeren Körper mit grösserer Dichte, Dispersion u. s. w. übergeht, zweitens aber ist die Reaction wichtig für die technische Darstellung der entsprechenden Aldehyde, weil dieselben sich bekanntlich in grösserer Ausbeute aus den Propenylderivaten, als aus den Allylverbindungen bilden. So konnte ich z. B. aus dem Isosafrol in guter Ausbeute Piperonal (künstliches Heliotropin) gewinnen.

Die Darstellung des Isosafrols aus Safrol kann bequem so eingerichtet werden, dass mit derselben Menge alkoholischen Kalis unbegrenzte Mengen (c. gr. s.) umgewandelt werden können.

Amsterdam, im Februar 1890.